Benzene 0.25/a

Order No. 81 03 691

Application Range

Standard Measuring Range: 0.25 to 2 ppm /2 to 10 ppm

Number of Strokes n: 5 / 1 Time for Measurement: 5 / 1 Standard Deviation: \pm 15 %

Color Change: light grey → dark grey to black

Ambient Operating Conditions

0 to 40 °C Temperature: Absolute Humidity: $< 40 \text{ mg H}_2\text{O} / \text{L}$

Reaction Principle

Benzene + Alu+ → dark grey to black reaction product

Cross Sensitivity

Up to a concentration of approx. 40 ppm (n=5) and 200 ppm (n=1), toluene, xylene and ethyl benzole are kept in the pre-layer where they cause a brown discolouration. 800 ppm n-Oktane (n=5) and 4000 ppm n-Octane (n=1) do not cause any discoluration in the indicating layer.

Benzene 1/a

Application Range

Standard Measuring Range: 1 ppm Number of Strokes n: 4

Time for Measurement: approx. 3 min

Standard Deviation: ± 20 %

Color Change: light grey → dark grey to black

Ambient Operating Conditions

Temperature: 0 to 40 °C

Absolute Humidity: $< 40 \text{ mg H}_2\text{O} / \text{L}$

Reaction Principle

Benzene + Ali 3⁺ → dark grey to black reaction product

Cross Sensitivity

Alkanes are not indicated. Toluene, xylene, ethyl benzene, and other substituted aromatics up to a concentration of approx. brown discolouration (approx. 4 mm at 40 ppm). 200 ppm propene and 200 ppm 1-butene each to not cause any dicolouration of the indicating layer.

D-5457-2004

Benzene 2/a

Order No. 81 01 231

Application Range

Standard Measuring Range: 2 to 60 ppm

Number of Strokes n: 20

Time for Measurement: approx. 8 min Standard Deviation: \pm 10 to 15 %

Color Change: white → brown grey

Ambient Operating Conditions

Temperature: 0 to 40 °C

Absolute Humidity: 1 to 15 mg H_2O / L

Reaction Principle

 $C_6H_6 + I_2O_5 + H_2SO_4 \rightarrow I_2$

Cross Sensitivity

Alkyl benzenes such as toluene or xylene up to a concentration of 200 ppm do not affect the indication. It is impossible to measure benzene in the presence of petroleum hydrocarbons and carbon monoxide.

Benzene 5/a

Application Range

Standard Measuring Range: 5 to 40 ppm Number of Strokes n: 15 to 2 Time for Measurement: max. 3 min Standard Deviation: ± 30 %

Color Change: white → red brown

Ambient Operating Conditions

0 to 40 °C Temperature: Absolute Humidity: max. $50 \text{ mg H}_2\text{O}$ / L

Reaction Principle

 $2 \ \mathsf{C_6H_6} + \mathsf{HCHO} \ \rightarrow \ \mathsf{C_6H_5}\text{-}\mathsf{CH_2}\text{-}\mathsf{C_6H_5} + \mathsf{H_2O}$ C_6H_5 - CH_2 - C_6H_5 + H_2SO_4 \rightarrow p-quinoid compound

Cross Sensitivity

Other aromatics (toluene, xylene) are retained in the pre-layer causing a reddish brown discoloration. If the toluene or xylene concentrations are too high the entire pre-layer up to the indicating layer is discolored making a benzene measurement impossible. Petroleum hydrocarbons, alcohols and esters do not affect the indication.

Benzene 5/b

Order No. 67 28 071

Application Range

Standard Measuring Range: 5 to 50 ppm

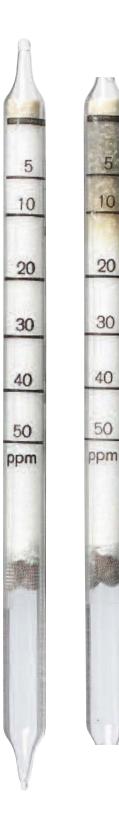
Number of Strokes n: 20

Time for Measurement: approx. 8 min
Standard Deviation: ± 10 to 15 %

Color Change: white → brown green

Ambient Operating Conditions

Temperature: 0 to 40 °C


Absolute Humidity: 3 to 15 mg H_2O / L

Reaction Principle

 $C_6H_6 + I_2O_5 \rightarrow I_2$

Cross Sensitivity

Many other petroleum hydrocarbons are indicated as well, but with different sensitivities. It is impossible to differentiate them. Other aromatics are indicated as well.

